本发明涉及一种基于分层及分块特征融合的跨视角步态识别方法,包括:构建并训练基于分层及分块特征融合网络模型;将待识别身份的步态剪影图序列送入训练好的基于分层及分块特征融合网络模型获取步态特征,通过与注册数据集进行特征相似性比对完成查询样本的身份识别;构建基于分层及分块特征融合网络模型,包括:依次构建分层步态识别框架、部分特征混合掩膜、骨架网络、分级水平金字塔、分块特征融合模块;本发明提出的分层步态识别框架,打破通用步态识别框架先提取特征再进行特征映射的先后顺序,可以从特征提取的任意阶段获取特征进行映射,使用高级特征与低级特征相结合的方式,具有更好的效果以及更大的灵活性⊙