本发明属于移动机器人自主定位领域,提供了一种应用于动态环境的激光SLAM系统及方法,采集机器人当前所在位置的周围环境信息,得到当前环境的三维点云数据;对当前环境的三维点云数据进行球面投影,生成规则的顶点图;基于规则的顶点图,利用预先训练好的激光SLAM模型进行位姿估计和地图构建;本发明解决现有技术中的不足,即环境中动态物体的存在会破坏SLAM的静态环境假设、激光里程计环节对深度学习的表的能力应用不充分,只简单地利用深度学习方法增加语义约束、闭环检测环节没有关注到场景中不同物体间的拓扑关系、在运动物体剔除方法中应用全类别语义分割造成信息浪费,增加无用人工标记成本和动态物体分割不完整等问题①